Multi-objective calibration of a hydrologic model using multi-objective screening
J. Mai 1’2, M. Cuntz 3, S. Thober 2, L. Samaniego 2, and B. Tolson !

b University of Waterloo, Waterloo, Canada 2 Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
bhysiologie Forestieres, UMR1137, Champenoux-Vandoeuvre Les Nancy, France  Contact: (juliane.mai@uwaterloo.ca)

3 INRA-Université de Lorraine, UMR Ecologie et Eco

1. Introduction

Hydrologic models are traditionally calibrated against discharge. Recent studies have
shown however, that only a few global model parameters are constrained using the inte-
gral discharge measurements. It is therefore advisable to focus only on this informative
subset of parameters during calibration. To constrain a larger subset of parameters,
multiple objectives might be considered and a multi-objective calibration algorithm
should be applied. The questions are (1) which subset of parameters can be constrained
using these multiple objectives and (2) do multi-objective calibration algorithms benefit
from only using this subset of parameters during calibration.

4. Multi-objective Model Calibration

Pareto-archived dynamically dimensioned search (PA-DDS) algorithm  Objective functions used:

2. Model & Study Area

The study is performed using the distributed hydro-
logic model at the mesoscale (mHM) with 53
parameters. The model uses grid cells as a primary
hydrologic unit, and accounts for processes like snow
accumulation and melting, soil moisture dynamics, in-
filtration, surface runoff, evapotransp., subsurface stor-

age and discharge generation. The model is applied in
three distinct catchments of different hydrological Fig_ 1:  Neckar (DE), Sava
characteristics over Europe. (SLO), and Guadalquivir (ES)

3. Multi-objective Parameter Screening
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Fig. 3: Informative parameters (colored boxes) for all three catchments. 1 and o for
total number of parameters identified in all 10 screenings can be seen to the right.

Fig. 4: MO calibration results without Fig. 5: MO calibration results using MO
screening (all 53 parameters are calibrated) screening #2 (only screened param. are cal-

introduced by Asadzadeh and Tolson (2013) using hyper-volume con- Objective #1: 1 — NSE(In(Qpign)) — Min!
tribution metric and 10 replicates for each of the scenarios Objective #2: 1 — NSE(In(Qow)) — Min!
Comput. budget: 1000, 2000, 5000,10 000, 15000 model evaluations ~ where Qhigh and Qo are the high and low flow discharge values resp.
Reference front: 100 000 model evaluations using Qinres = Qmin + (Qmax + @min) - 0.05 to categorize discharge values
5. Results
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Fig. 6: MO calibration results using differ-
ent versions of screening (only screened parame-

using different budgets for PA-DDS ibrated) using different budgets for PA-DDS  ters are calibrated) using budget of 10 000 model
0,06 evaluations for PA-DDS
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004 L i e The parameter screening degrades multi-objective calibration quality relative to
% non-screening approach (compare Fig. 4 & 5).
= e |t is not clear yet whether this performance reduction is specific to the chosen cali-
2 0.02 - bration algorithm or holds also for other MO algorithms.
% e The loss in performance correlates well with truncation of model variability during
= parameter screening (Fig. 7).
% 0.00 /7 Iv | | . e The d.ifferent param.eter tscreening me’.chods tested show no real difference from each
0 ; ; 0 5 other in terms of calibration results (Fig. 6).
| o e [he number of model evaluations required for screening are reduced by a factor of 2
truncation of variability [7] using a multi-objective screening approach instead of the state-of-the-art single objective
\'4 %Eg)Aver. 41 approach (Fig. 2).
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