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1. Introduction

Hydrologic models are traditionally calibrated against discharge. Recent studies have
shown however, that only a few global model parameters are constrained using the inte-
gral discharge measurements. It is therefore advisable to focus only on this informative
subset of parameters during calibration. To constrain a larger subset of parameters,
multiple objectives might be considered and a multi-objective calibration algorithm
should be applied. The questions are (1) which subset of parameters can be constrained
using these multiple objectives and (2) do multi-objective calibration algorithms benefit
from only using this subset of parameters during calibration.

The study is performed using the distributed hydro-
logic model at the mesoscale (mHM) with 53
parameters. The model uses grid cells as a primary
hydrologic unit, and accounts for processes like snow
accumulation and melting, soil moisture dynamics, in-
filtration, surface runoff, evapotransp., subsurface stor-
age and discharge generation. The model is applied in
three distinct catchments of different hydrological
characteristics over Europe.
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Fig. 1: Neckar (DE), Sava
(SLO), and Guadalquivir (ES)
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Fig. 2: Different methods of multi-objective screening
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Fig. 3: Informative parameters (colored boxes) for all three catchments. µ and σ for
total number of parameters identified in all 10 screenings can be seen to the right.

3. Multi-objective Parameter Screening

Pareto-archived dynamically dimensioned search (PA-DDS) algorithm
introduced by Asadzadeh and Tolson (2013) using hyper-volume con-
tribution metric and 10 replicates for each of the scenarios
Comput. budget: 1000, 2000, 5000,10 000, 15 000 model evaluations
Reference front: 100 000 model evaluations

Objective functions used:
Objective #1: 1− NSE(ln(Qhigh))→ Min!
Objective #2: 1− NSE(ln(Qlow))→ Min!

where Qhigh and Qlow are the high and low flow discharge values resp.
using Qthres = Qmin + (Qmax +Qmin) · 0.05 to categorize discharge values

4. Multi-objective Model Calibration
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Fig. 4: MO calibration results without
screening (all 53 parameters are calibrated)
using different budgets for PA-DDS
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Fig. 5: MO calibration results using MO
screening #2 (only screened param. are cal-
ibrated) using different budgets for PA-DDS
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Fig. 6: MO calibration results using differ-
ent versions of screening (only screened parame-
ters are calibrated) using budget of 10 000 model
evaluations for PA-DDS
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Fig. 7: Loss in performance vs. truncation
error induced by neglecting screened param-
eters during PA-DDS calibration

5. Results

• The parameter screening degrades multi-objective calibration quality relative to
non-screening approach (compare Fig. 4 & 5).

• It is not clear yet whether this performance reduction is specific to the chosen cali-
bration algorithm or holds also for other MO algorithms.

• The loss in performance correlates well with truncation of model variability during
parameter screening (Fig. 7).

• The different parameter screening methods tested show no real difference from each
other in terms of calibration results (Fig. 6).

• The number of model evaluations required for screening are reduced by a factor of 2
using a multi-objective screening approach instead of the state-of-the-art single objective
approach (Fig. 2).

6. Conclusions
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